

RO3003G2™ Circuit Materials

High Frequency Laminates

RO3003G2[™] high-frequency ceramic-filled PTFE laminates are an extension of Rogers' industry leading RO3003[™] solutions. RO3003G2 laminates are based on industry feedback to address the next generation needs for mm-wave automotive radar applications.

The combination of optimized resin and filler content along with the introduction of Very Low Profile ED copper translates to a Dk of 3.00 @ 10 GHz (clamped stripline method) & 3.07 @ 77 GHz (microstrip differential phase length method). These laminates also show very low insertion loss of 1.3dB/inch for 5 mil laminates as measured by the microstrip differential phase length method.

RO3003G2 laminates can be fabricated into printed circuit boards using standard PTFE circuit board processing techniques, with minor modifications as described in the application note "Fabrication Guidelines for RO3000° Series High Frequency Circuit Materials."

FEATURES AND BENEFITS:

Best in class performance for insertion loss

 Utilizing new Very Low Profile (VLP) ED copper

Minimize dielectric constant variation in finished PCB

 Homogeneous construction incorporating VLP ED copper and reduced dielectric porosity

Enable trend toward more small diameter vias

 Enhanced filler system using small rounded particles

Global manufacturing foot print

Multiple high volume manufacturing plants

TYPICAL APPLICATIONS:

- Adaptive cruise control
- Forward collision warning
- Active brake assist
- Lane change assist
- Traffic jam pilot
- Parking pilot
- Blind spot detection

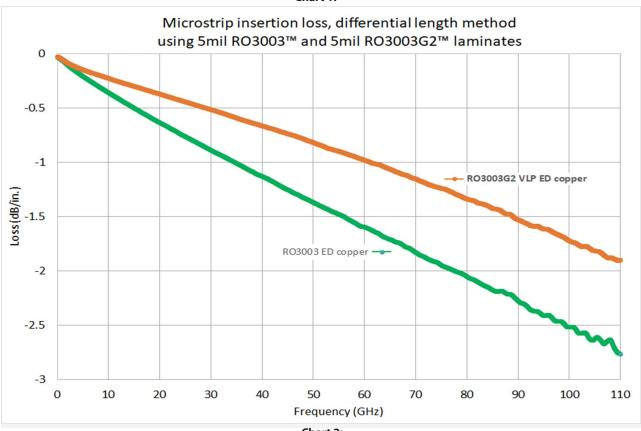
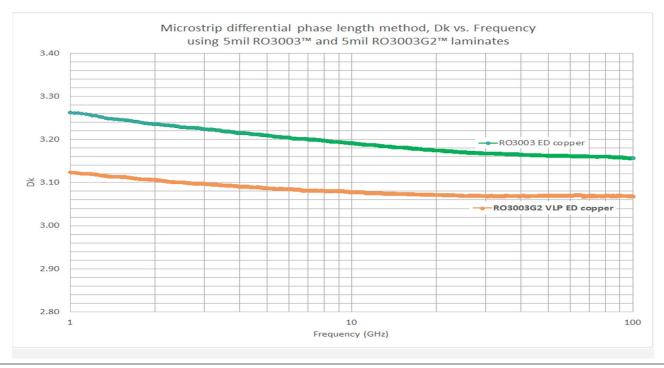



Chart 2:

	TYPICAL VALUE ⁽¹⁾				
PROPERTY	RO3003G2	Direction	Unit	Condition	Test Method
Dielectric Constant, e _r Process	3.00 ± 0.04	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5 Clamped Stripline
(2,) Dielectric Constant, e _r Design	3.07	Z	-	77 GHZ	Differential Phase Length Method
Dissipation Factor, tan d	0.0011	Z	-	10 GHz 23°C	IPC-TM-650 2.5.5.5
Thermal Coefficient of e _r	-35	Z	ppm/°C	10 GHz -50 to 150℃	IPC-TM-650 2.5.5.5
Dimensional Stability	-0.16 -0.14	X Y	mm/m	Method C	IPC TM-650 2.2.4
Volume Resistivity	1.4 x 10 ⁹	-	MΩ•cm	COND A	IPC 2.5.17.1
Surface Resistivity	2.6 x 10 ⁸	-	ΜΩ	COND A	IPC 2.5.17.1
Tensile Modulus	378 396	X Y	ksi	23°C	ASTM D638
Moisture Absorption	0.06	-	%	D48/50	IPC-TM-650 2.6.2.1
Specific Heat	0.73 0.83	Z	J/g/K	0°C 50°C	ASTM E1269-11
Thermal Conductivity	0.43	Z	W/m/K	50°C	ASTM D5470
Coefficient of Thermal Expansion	16 17 18	X Y Z	ppm/°C	23°C/50% RH	IPC-TM-650 2.4.41
Td	500	-	°C TGA	-	ASTM D3850
Density	2.15	-	gm/ cm³	23°C	ASTM D792
Copper Peel Strength	12.0	-	lb/in	1/2 oz. EDC After Solder Float	IPC-TM-2.4.8
Flammability	V-0	-	-	-	UL 94
Lead Free Process Compatible	YES	-	-	-	-

NOTES:

(1) Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corporation.

⁽²⁾ The design Dk is an average number from several different tested lots of material and on the most common thicknesses. If more detailed information is required, please contact Rogers Corporation or refer to Rogers' technical papers in the Rogers Technology Support Hub at www.rogerscorp.com/techub

Foil	Sa (microns)	Sz (microns)	Sq (microns)	Surface Area Index
1/4 oz	0.35	3.85	0.44	2.37
1/2 oz	0.34	3.73	0.43	2.82
1 oz	0.36	4.05	0.45	2.24

Standard Thicknesses	Standard Panel Sizes	Standard Claddings
0.005" (0.13mm) +/- 0.0005" 0.010" (0.25mm) +/- 0.0007"	24" X 18" (610 X 457mm) 24" X 21" (610 X 533mm)	VLP Electrodeposited Copper Foil ½ oz (18μm) <i>TH/TH</i>
	*Additional panel sizes available	*Additional cladding weights are available

^{*}Contact Customer Service or Sales Engineering to inquire about additional available product configurations

The information in this data sheet is intended to assist you in designing with Rogers' circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit materials for each application.

These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited.

The Rogers' logo, Helping power, protect, connect our world, RO3000, RO3003 and RO3003G2 are trademarks of Rogers Corporation or one of its subsidiaries.

©2022 Rogers Corporation, Printed in U.S.A., All rights reserved. Revised 1625 102522 **Publication #92-547**

