

TC350[™] Plus Laminates

TC350[™] Plus laminates are ceramic filled PTFE-based woven glass reinforced composite materials providing a cost effective, high performance, thermally enhanced material for the circuit designer. With a thermal conductivity of 1.24W/ mK, this next generation PTFE-based laminate is ideally suited for higher power microwave and industrial heating applications requiring higher maximum operating temperatures, low circuit losses, and excellent thermal dissipation within the circuit board. Additionally, the advanced filler system used enables the composite to have much improved mechanical drilling performance when compared with other competitive laminates. This will result in lower manufacturing costs during circuit board fabrication.

The standard TC350 Plus laminates are offered with a smooth ($Rq = 1.0\mu m$) electrodeposited copper foil cladding to reduce insertion loss and RF heating of conductors within the circuit. Resistive foil and metal plate options are available upon request. TC350 Plus laminates are available in thicknesses from 0.010" to 0.060" to address higher power design needs.

The woven glass reinforcement combined with the high filler content of the laminate affords excellent dimensional stability. Other key features of the laminate include low z-axis CTE (38ppm/°C) for excellent plated through hole reliability, low loss tangent of 0.0017 at 10 GHz to enable low loss designs, low moisture absorption of 0.05% to ensure stable performance in a range of operating environments, high dielectric strength of 650 V/mil to ensure good z-axis insulation between conductor layers, and UL 94 V-0 flammability performance to enable the use of the material in commercial applications.

TC350 Plus laminates are used in a range of applications including Amplifiers, Combiners, Power Dividers, Couplers, and Filters. Applicable markets range from Commercial and Consumer to Defense and Aerospace.

Data Sheet

Features and Benefits:

High Thermal Conductivity of 1.24 W/(mK)

 Improved Thermal Dissipation Enabling Lower Operating Temperatures for High Power Applications

Low Loss Tangent of 0.0017 at 10 GHz

Excellent High Frequency
 Performance

Very Low Profile and Thermally Stable ED Copper Foil (Rq = 1.0 μ m)

 Very Low Insertion Loss and Reduced RF Heat Generation of Conductors

Advanced Filler Systems

Improved Drilling Performance
 When Compared to Competitive
 Materials

Typical Applications:

- High Power RF and Microwave
 Power Amplifiers
- High Power Amplifiers for Industrial Heating Applications
- Passive Components such as Couplers, Filters and Power Dividers

Standard Thicknesses	Standard Panel Sizes	Standard Claddings
0.010" (0.252mm) +/- 0.0007" 0.020" (0.508 mm) +/- 0.0015" 0.030" (0.762 mm) +/- 0.0020" 0.060" (1.524 mm) +/- 0.0030"	12″ X 18″ (305mm X 457mm) 24″ X 18″ (610mm X 457mm	<u>Reverse Treated Electrodeposited Copper Foil</u> ½ oz. (18µm) <i>SH/SH</i> 1 oz. (35µm) <i>S1/S1</i>
*Additional non-standard thicknesses available from 0.010" - 0.060" in increments of 0.005"	*Additional panel sizes available	*Additional cladding weights are available

*Contact Customer Service or Sales Engineering to inquire about additional available product configurations

TC350 Plus Property	Typical Value ⁽¹⁾	Units	Test Conditions		Test Method		
Electrical Properties							
Dielectric Constant, (ε_r) (process)	3.50	-	23C @ 50% RH	10 GHz	IPC TM-650 2.5.5.5		
Dielectric Constant (design)	3.62		C-24/23/50	10 GHz	Microstrip Differential Phase Length		
Dissipation Factor (process)	0.0017	-	23C @ 50% RH	10 GHz	IPC TM-650 2.5.5.5		
Thermal Coefficient of Dielectric Constant	-42	ppm/°C	50°C to 150°C	10 GHz	IPC TM-650 2.5.5.5		
Volume Resistivity	9.4 x 10 ¹¹	Mohm-cm	C-96/35/90		IPC TM-650 2.5.17.1		
Surface Resistivity	3.3 x 10 ¹²	Mohm	C-96/35/90		IPC TM-650 2.5.17.1		
Electrical Strength (dielectric strength)	650	V/mil			IPC TM-650 2.5.6.2		
Dielectric Breakdown	38.9	kV	D-48/50	X/Y direction	IPC TM-650 2.5.6		
Comparative Tracking Index	0/600	class/volts	C-40/23/50		UL-746A, ASTM D3638		
Thermal Properties		· · · · · ·					
Decomposition Temperature (Td)	500	°C	2hrs @ 105°C	5% Weight Loss	IPC TM-650 2.3.40		
Coefficient of Thermal Expansion	10	Х	ppm/°C	-55°C to 288°C	IPC TM-650 2.4.41		
	9	Y					
	38	Z					
Thermal Conductivity	1.24	W/(m·K)		Z direction	ASTM D5470		
Mechanical Properties							
Copper Peel Strength after Thermal Stress	0.70 (4.0)	N/mm (lbs/in)	10s @288°C	35 µm foil	IPC TM-650 2.4.8		
Flexural Strength MD CMD	75.2 (10.9) 64.8 (9.4)	MPa (ksi)	25°C +/- 3°C		ASTM D790		
Tensile Strength MD CMD	49.0 (7.1) 46.2 (6.7)	MPa (ksi)	23°C/50RH		ASTM D3039/ D3039-14		
Flex Modulus MD CMD	7791 (1130) 7171 (1040)	MPa (ksi)	25°C +/- 3°C		IPC-TM-650 Test Method 2.4.4		
Dimensional Stability (MD/CMD)	0.05/0.15	mils/inch	after etch + bake		IPC-TM-650 2.4.39a		
Physical Properties							
Flammability	V-0	-		-	UL94		
Moisture Absorption	0.05	%	E1/105 +D48/50		IPC TM-650 2.6.2.1		
Density	2.22	g/cm ³	C-24/23/50		ASTM D792		
Specific Heat Capacity	0.80	J/g°C	2 hours at 105°C		ASTM E2716		
Nasa Outgassing	0.02/<0.01	%		TML/CVCM	ASTM E595		

(1) Typical values are a representation of an average value for the population of the property. For specification values contact Rogers Corp.

The information in this data sheet is intended to assist you in designing with Rogers' circuit materials. It is not intended to and does not create any warranties express or implied, including any warranty of merchantability or fitness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular purpose. The user should determine the suitability of Rogers' circuit materials for each application.

The Rogers' logo, TC350 and Helping power, protect, connect our world are trademarks of Rogers Corporation or one of its subsidiaries. 2022 Rogers Corporation, Printed in U.S.A., All rights reserved. Revised 1610 080922 PUB# 92-191